Sometimes What Glitters is Gold The Detection of an Optical Counterpart to a Neutron Star-Neutron Star Merger

Ben Shappee & Maria Drout

GW170817 Papers

Query Results from the ADS Database						Go to bottom of page		
Selected and retrieved 77 austracts. Total citations: 19								
#	Bibcode Authors	Cites Title	Date	List of Links Access Cont	<u>s</u> rol Help			
1	 2017arXiv171005432S Shappee, B. J.; Simon, J. D.; Drout, M. R.; Piro, A. L.; Morrell, N.; Prieto, J. L.; Kasen, D.; Holoien, T. WS.; Kollmeier, J. A.; Kelson, D. D.; and 26 coauthors 	3.000 10/2017 A Z X R C U Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger						
2	 2017arXiv171005452C Coulter, D. A.; Foley, R. J.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.; and 7 coauthors 	2.000 10/2017 A Z X R C U Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source						
3	 2017arXiv171005443D Drout, M. R.; Piro, A. L.; Shappee, B. J.; Kilpatrick, C. D.; Simon, J. D.; Contreras, C.; Coulter, D. A.; Foley, R. J.; Siebert, M. R.; Morrell, N.; and 34 coauthors 	2.000 10/2017 <u>A Z X R C U</u> Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis						
4	 2017arXiv171005434K Kilpatrick, Charles D.; Foley, Ryan J.; Kasen, Daniel; Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Coulter, David A.; Drout, Maria R.; Piro, Anthony L.; Shappee, Benjamin J.; Boutsia, Konstantina; and 11 coauthors 	2.000 10/2017 <u>A</u> <u>Z</u> <u>X</u> <u>R</u> <u>C</u> <u>U</u> Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger						
5	□ <u>2017arXiv171005901M</u>	1.000	10/2017	ΔZ	X	<u>R</u> <u>C</u>	U	

Carnegie Observatories

+ Juna, Barry, Carlos, Konstantina, Francesco, David and observations from 12 other OCIW/LCO scientists and 18 other scientists

UC Santa Cruz

+ 70 observatories and 1500 physicists/astronomers around the world

Multi-messenger Astronomy

Multi-messenger Astronomy

Photons

Neutrinos

Cosmic-Rays

Gravitational Waves

Multi-messenger Astronomy Success Stories

Multi-messenger Astronomy Success Stories

SN1987A: photons + neutrinos

Multi-messenger, Astronomy Gravitational Wave

Gravitational Waves

$$t_{\rm GW} = \frac{3}{85} \frac{a_1}{c} \left(\frac{a_1^3 c^6}{G^3 m_0 m_1 M} \right) \left(1 - e_1^2 \right)^{7/2}$$

$$\simeq 1.6 \times 10^{13} \,\mathrm{yr} \left(\frac{2 \, M_\odot^3}{m_0 m_1 M} \right) \left(\frac{a_1}{0.1 \,\mathrm{AU}} \right)^4 \left(1 - e_1^2 \right)^{7/2},$$

Hulse-Taylor binary

Measured Orbital Parameters for PSR B1913+16

Fitted Parameter	Value
$a_p \sin i$ (s)	2.3417725~(8)
e	$0.6171338\ (4)$
T_0 (MJD)	52144.90097844(5)
P_b (d)	0.322997448930 (4)
ω_0 (deg)	292.54487(8)
$\langle \dot{\omega} \rangle \; (\mathrm{deg}/\mathrm{yr}) \ldots$	4.226595(5)
γ (s)	0.0042919(8)
$\dot{P}_b \ (10^{-12} \text{ s/s})$	-2.4184(9)

Hulse-Taylor binary

$$t_{\rm GW} = \frac{3}{85} \frac{a_1}{c} \left(\frac{a_1^3 c^6}{G^3 m_0 m_1 M} \right) \left(1 - e_1^2 \right)^{7/2}$$

$$\simeq 1.6 \times 10^{13} \,\mathrm{yr} \left(\frac{2 \, M_\odot^3}{m_0 m_1 M} \right) \left(\frac{a_1}{0.1 \,\mathrm{AU}} \right)^4 \left(1 - e_1^2 \right)^{7/2},$$

Measured Orbital Parameters for PSR B1913+16

Fitted Parameter	Value
$a_p \sin i$ (s)	2.3417725(8)
e	$0.6171338\ (4)$
T_0 (MJD)	52144.90097844 (5)
P_b (d)	0.322997448930 (4)
ω_0 (deg)	292.54487(8)
$\langle \dot{\omega} \rangle ~(\mathrm{deg/yr}) \ldots$	4.226595(5)
γ (s)	0.0042919(8)
$\dot{P}_b \ (10^{-12} \text{ s/s})$	-2.4184(9)

Hulse & Taylor 1975, Weisberg and Taylor 2005

Detecting Gravitational Waves

Detecting Gravitational Waves Fabry-Perot-Michelson Interferometers

Detecting Gravitational Waves

Astronomy: Roen Kelly, after C. Moore, R. Cole, and C. Berry (Institute of Astronomy, Univ. of Cambridge

Multi-messenger Astronomy Motivation

Multi-messenger Astronomy Motivation

Gravitational Wave data only provides specific information

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

GW150814 Black Holes of Known Mass

LIGO/VIRGO

Short-duration GRBs as NS mergers

r-process nucleosynthesis

Kilonova What will they look like?

Kilonova What will they look like?

Multi-messenger Astronomy Motivation

Gravitational Wave data only provides specific information

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

Aug 17th, 2017

GRB 130603B a Kilonova?

Aug 17th, 2017

Aug 17, 2017

TITLE: GCN CIRCULAR
NUMBER: 21505
SUBJECT: LIGO/Virgo G298048: Fermi GBM trigger 524666471/170817529: LIGO/Virgo Identification of
a possible gravitational-wave counterpart
DATE: 17/08/17 13:21:42 GMT
FROM: Reed Clasey Essick at MIT <ressick@mit.edu>

The LIGO Scientific Collaboration and the Virgo Collaboration report:

The online CBC pipeline (gstlal) has made a preliminary identification of a GW candidate associated with the time of Fermi GBM trigger 524666471/170817529 at gps time 1187008884.47 (Thu Aug 17 12:41:06 GMT 2017) with RA=186.62deg Dec=-48.84deg and an error radius of 17.45deg.

The candidate is consistent with a neutron star binary coalescence with False Alarm Rate of $\sim 1/10,000$ years.

An offline analysis is ongoing. Any significant updates will be provided by a new Circular.

[GCN OPS NOTE(17aug17): Per author's request, the LIGO/VIRGO ID was added to the beginning of the Subject-line.]

Aug 17, 2017

TITLE: GCN CIRCULAR
NUMBER: 21505
SUBJECT: LIGO/Virgo G298048: Fermi GBM trigger 524666471/170817529: LIGO/Virgo Identification of
a possible gravitational-wave counterpart
DATE: 17/08/17 13:21:42 GMT
FROM: Reed Clasey Essick at MIT <ressick@mit.edu>

The LIGO Scientific Collaboration and the Virgo Collaboration report:

The online CBC pipeline (gstlal) has made a preliminary identification of a GW candidate associated with the time of Fermi GBM trigger 524666471/170817529 at gps time 1187008884.47 (Thu Aug 17 12:41:06 GMT 2017) with RA=186.62deg Dec=-48.84deg and an error radius of 17.45deg.

The candidate is consistent with a neutron star binary coalescence with False Alarm Rate of $\sim 1/10,000$ years.

An offline analysis is ongoing. Any significant updates will be provided by a new Circular.

[GCN OPS NOTE(17aug17): Per author's request, the LIGO/VIRGO ID was added to the beginning of the Subject-line.]

Aug 17, 2017

TITLE: GCN CIRCULAR
NUMBER: 21505
SUBJECT: LIGO/Virgo G298048: Fermi GBM trigger 524666471/170817529: LIGO/Virgo Identification of
a possible gravitational-wave counterpart
DATE: 17/08/17 13:21:42 GMT
FROM: Reed Clasey Essick at MIT <ressick@mit.edu>

The LIGO Scientific Collaboration and the Virgo Collaboration report:

The online CBC pipeline (gstlal) has made a preliminary identification of a GW candidate associated with the time of Fermi GBM trigger 524666471/170817529 at gps time 1187008884.47 (Thu Aug 17 12:41:06 GMT 2017) with RA=186.62deg Dec=-48.84deg and an error radius of 17.45deg.

The candidate is consistent with a neutron star binary coalescence with False Alarm Rate of $\sim 1/10,000$ years.

An offline analysis is ongoing. Any significant updates will be provided by a new Circular.

[GCN OPS NOTE(17aug17): Per author's request, the LIGO/VIRGO ID was added to the beginning of the Subject-line.]

Gravitational Waves

Abbot et al. 2017

Gravitational Waves

LVT151012 ~~~~~~

GW170104 ^^^^

GW170817

Gravitational Waves Component Masses

m1 = 1.36 - 1.60 Msun m2 = 1.17 - 1.36 Msun Mtot = 2.74 Msun Mass ratio = 0.7 - 1.0

Abbott et al (2017)


```
• 1.74 +/- 0.05s
```

- 4-6 orders of mag lessthan a typical SwiftsGRB (Gehrels et al.2009).
- X-ray emission 6-8
 orders of mag less
 than typical Swift
 sGRB
 (Gehrels et al. 2009).

Abbot et al. 2017b

Gamma-rays

- 4-6 orders of mag less than a typical Swift sGRB (Gehrels et al. 2009).
- X-ray emission 6-8 orders of mag less than typical Swift sGRB (Gehrels et al. 2009).

Abbot et al. 2017b

Sky Localization

Not a better localization

Sky Localization

Coulter et al. 2017

SSS17a vs. Other Transients

Shappee, et al. 2017

SSS17a: Follow-Up

<u>Swope 1-m:</u> Optical Photometry

<u>du Pont 2.5-m</u>: Near-IR Photometry

Magellan/Clay and Magellan/Baade 6.5m: Optical Photometry NIR Photometry Optical Spectroscopy

+0.5 days (Thurs.)

+1.5 days (Fri.)

+2.5 days (Sat.)

+2.5 days (Sat.)

+3.5 days (Sun.) Portland 17 M OREGON IDAHO 18 (AB) 19 Salt Lake City mag NEVADA 20 Sacramento San Francisco 21 0 San Jose CALIFORNIA Las Vegas 2 8 10 12 6 0 4 Rest-frame time from merger (days) ARIZONA Pasadena Phoenix

San Diego

+5.5 days (Tues.)

+6.5 days (Wed.)

+8.5 days (Fri.)

+9.5 days (Sat.)

SSS17a: Observations

SSS17a Evolution

SSS17a: Observations

Drout et al. (2017)

SSS17a is Unique

Siebert et al. 2017

X-ray and Radio Emission

Chandra +9d; (Troja et al. 2017)

JVLA +16.4d; (Hallinan et al. 2017)

All Together:

What does it all mean?

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

Precise Localization

Host Environment No Progenitor

Host Environment Old Population, Similar to SGRB Hosts

Pan et al. 2017

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

 r-process heating goes as t^{1.3}

- r-process heating goes as t^{-1.3}
- two components are required

- r-process heating goes as t^{-1.3}
- two components are required

- r-process heating goes as t^{-1.3}
- two components are required
- temperature evolution consistent with lanthanide recombination

1 Micron Spectral Feature

Chornock et al. 2017

Elemental Spectral Feature?

Smart et al. 2017

Consistent with an r-process powered transient in which approximately 0.05 solar masses of lanthanide-rich material is ejected

Consistent with an r-process powered transient in which approximately 0.05 solar masses of lanthanide-rich material is ejected

Nature of the blue component (See Piro & Kollmeier 2017)

Consistent with an r-process powered transient in which approximately 0.05 solar masses of lanthanide-rich material is ejected

> Nature of the blue component (See Piro & Kollmeier 2017)

Nature of the GRB/X-rays/radio

Murguia-Berthier et al. 2017

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

"Standard Siren" Hubble Constant

"Standard Siren" Hubble Constant

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

Summary

We discovered the first EM counterpart to a gravitational wave source

This begins the era of multi-messenger gravitational-waves astronomy, with implications across many areas of astronomy

Multi-messenger Astronomy Success Stories

SN1987A: photons + neutrinos

SSS17A: photons + GWs

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
 - Origin of short-duration GRBs
 - Origin of r-process elements
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

SSS17a: Follow-Up

Teleseo Tracki	ope ng	Mirror <i>Running</i>	Guider Not Guidin	g T	Dome racking	Rotator <i>Faulted</i>	a de la compañía de la	Safety <u>NA</u>
	LSŢ	18:10:4	3	UT A	lug 24,	06:21:4	3	
Base Current Offset	α13 ^α 13 +5	:09:48.1 :10:26.5 29.00 ^{°°}	5-23: ⁵ -23: ⁵ -23: -333	:22:53 :28:26 .00	B Equinor Time to Tel n Rot C	s 2000.0 Limit ot up CW	El Az Dome TopShut BotShut	5.14° +242.70° +242.71° 104.0° 3.0°
INST LRI CA -26 CE -64	SADC .4" .7"	PO LRISB (-26.4) (-64.7)	Rot Mode Pos Sky PA Drive	Angle +0.00° +0.03°	ΔCS Move Sens Res Sens Range	3.73 nm 95.4 nm 24 µm	HA 0 Airmass Focus	4 ¹ 59 West 10.00 -2.22
	Tiklog	gger_vm.						
Hulse-Taylor binary

Measured Orbital Parameters for PSR B1913+16

Fitted Parameter	Value
$a_p \sin i$ (s)	2.3417725~(8)
e	0.6171338~(4)
T_0 (MJD)	52144.90097844~(5)
P_b (d)	0.322997448930 (4)
$\omega_0 \; (\mathrm{deg}) \; \ldots \; \ldots$	292.54487(8)
$\langle \dot{\omega} \rangle \; (\mathrm{deg}/\mathrm{yr}) \ldots$	4.226595(5)
γ (s)	0.0042919(8)
$\dot{P}_b \ (10^{-12} \text{ s/s})$	-2.4184 (9)

Hulse & Taylor 1975, Weisberg and Taylor 2005

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity

- 1. Precise Location/Distance Determination
 - Provides environmental information
 - Breaks degeneracy with inclination
- 2. Measure Influence/Test Merger Models
- 3. Fundamental Physics
 - Speed of gravity
 - Lorentz invariance, equivalence principle, non-GR gravity
- 4. Cosmology
 - "Standard Siren" Hubble diagram

GW150814

Black Holes of Known Mass

Precise Localization