Early light curves of SNe la and ASASSN-14lp

Tony Piro (Carnegie) CSP Meeting, July 30, 2014

Motivation

What can we learn about SNe progenitors?

- Are all SNe Ia from M_{Ch} or a variety of white dwarf masses?
- What are the companion stars that donate mass?
- What is the nature of the explosive burning?
- What are the underlying causes for their diversity and various classes (91T, 91bg, etc)?

Early observations can provide unique information for answering these questions.

Transient observations

This is an ideal time for making these early observations:

- Palomar Transient Factor (PTF)
- Las Cumbres Observatory Global Telescope (LCOGT)
- All-Sky Automated Survey for Supernovae (ASAS-SN)
- Carnegie Supernova
 Project (CSP)

Probing an Exploding Star with Thermal Diffusion

Photons reach the surface on a "thermal diffusion time"

What do we hope to actually measure?

Three main sources of emission:

- 1. Cooling of shock-heated white dwarf
- 2. Interaction of the ejecta with the companion
- 3. Radioactive heating from ⁵⁶Ni

Shock-Heated Surface Layers

The first optical emission from SNe is shock cooling

Luminosity proportional to initial radius

 $\frac{R_0c}{\kappa}\frac{E}{M}$

 κ

Luminosity is proportional to progenitor radius!

Interaction with Companion

absolute magnitude

Supernova ejecta slams into companion

Creates a funnel of hot emission

Emission roughly scales proportional to to the companion radius with a strong directional dependence (see Kasen 2010)

Rising Light Curve of SN 2011fe

Bloom et al. (2011) ApJL 744 17

 No detection of cooling from shock heating

• Exploding star's radius is less than 2.2 R_{Earth}

• First direct evidence that Type la SNe come from white dwarfs!

The importance of the explosion time

• Even without a clear shock detection, we would like to make constraints

• But constraints depend strongly on the **explosion time**

• What are the best ways to constrain the explosion time?

What about a t² rise?

Attempts have been made to estimate the explosion time by assuming a t² rise.

Problems:

• t² is not generally expected theoretically (Piro 2012)

 $L \propto \Delta M_{\text{diff}} X_{56} \propto t^{2(1+1/n)/(1+1/n+\beta)} X_{56}$ $L \propto t^{1.8} X_{56}$

- t² in a single band means bolometric certainly can't be t²!
- Bolometric light curves (e.g., 2011fe, Piro & Nakar 2014) are not t²

Maybe just fit arbitrary power law?

Using the velocity evolution

• For accelerating shock, the photophere evolves as

 $v_{\rm ph} \propto t^{-0.22}$ • Fitting to power-law constrains the explosion time

 Unfortunately, powerlaw index is model dependent and cannot be fit independently Piro & Nakar (2014)

Explosion time within ~0.5 days of estimate from light curve

ASASSN-14lp

Shappee, Piro, et al. (2015)

SN Ia with early photometry and spectroscopy

Explosion time estimated by both extrapolating light curve and velocities

Explosion time estimates different by ~2 days!

Companion constraints for 14lp

Uncertainties in explosion time motivate considering a range of explosion times

Companion **unlikely** to be a red super giant unless poor viewing angle

What does explosion time discrepancy mean? (also seen for 09ig, but not for 11fe and 12cg)

SuperNova Explosion Code (SNEC)

- 1D Lagrangian hydrodynamics
- Explosions triggered with a thermal bomb or piston
- Hydrodynamics and radiative diffusion solved together
- Thermodynamic equilibrium
- Gray opacity using OPAL and includes partial ionization
- Follows gamma-ray diffusion from ⁵⁶Ni

- Generates both bolometric LCs and specific bands
- Relatively fast which is useful for numerical experiments OPEN SOURCE! http://stellarcollapse.org/snec

http://stellarcollapse.org/snec

Varying the ⁵⁶Ni distribution

Shallow ⁵⁶Ni

• Steep early light curve

 Less of a "dark phase" (Piro & Nakar 2013)

Impact on photospheric velocity

- Power law evolution once nickel heating is important
- Slightly steeper than previous analytic result
- Does this point to an even earlier explosion time?

Revisiting ASASSN-14lp

Comparison with **EARLY** explosion time

Revisiting ASASSN-14lp

Comparison with LATE explosion time

Difficult to decide between these 2 cases with current data

Clues from color evolution?

Flatter color evolution indicates more shallow ⁵⁶Ni (Note: scaling with peak makes comparison by eye difficult!)

Conclusions

Early light curves are important

- Constrain progenitor radius
- Constrain companion radius
- Measure surface nickel distribution

Knowing the time of explosion is critical

- Light curve slope
- Photospheric velocity evolution
- Color evolution

Multiple photometric/spectroscopic observations before ~4 days after explosion is key

Future Work

What are the optimum observing strategies?

- What cadence?
- What depth?
- Photometric versus spectroscopic?
- How bad are different explosion time constraints?

What else can early light curves illuminate?

- Circumstellar material (from a merger? nova?)
- Non-trivial nickel distributions (double detonation?)
- SNEC will be a key tool (http://stellarcollapse.org/snec)