Nebular Phase NIR Spectroscopy of SNe Ia

Tiara Diamond Florida State University

CSP Team Meeting

31 July 2015

Intro

SNe la Progenitor Systems and Explosion Scenarios

Chandra Media Telecon Feb. 17, 2010 (artist interpretation)

Merger

Radioactive Decay and Products

$$^{56}\text{Ni} \rightarrow {}^{56}\text{Co} \rightarrow {}^{56}\text{Fe}$$

Intro

$^{56}\mathrm{Ni} \longrightarrow ^{56}\mathrm{Co} + \gamma + \nu_e$	$t_{1/2}(^{56}{ m Ni}) = 8.80{ m days}$
	$t_{1/2}(^{56}\text{Co}) = 77.12 \text{days}$
$e^{+} + e^{-} \longrightarrow p-Ps \longrightarrow 2\gamma$ $e^{+} + e^{-} \longrightarrow o-Ps \longrightarrow 3\gamma$	$t_{1/2}(p-Ps) = 125 \text{ ps}$ $t_{1/2}(o-Ps) = 142 \text{ ns}$

Late-Time Optical and NIR Spectra

NIR

Late-Time Optical and NIR Spectra

NIR

Spyromilio et al. 2004

Comparison with Models by P. Hoeflich

- used previously for normal bright and subluminous SNe Ia
- spherically symmetric DDT models
- free parameters
 - progenitor system conditions
 - ρ_c based on accretion history and material
 - $M_{\rm MS}$ and Z WD structure
 - explosion conditions
 - $ho_{\rm tr}$ extent of $^{56}{\rm Ni}$ production

Reference Model used with SN 2005df: "7p0z22..." ρ_c is varied from $0.5 - 4.0 \times 10^9 \,\mathrm{g \, cm^{-3}}$ $M_{\rm MS} = 7 \,\mathrm{M_{\odot}}$ solar metallically $\rho_{\rm tr} \approx 2.7 \times 10^7 \,\mathrm{g \, cm^{-3}}$

The Chemical Distribution in the Ejecta

FSU

The ⁵⁶Ni Abundance Depends on ρ_c

These models have been created so that they have nearly identical outer layers of ⁵⁶Ni! The abundances in the inner region is increasingly affected by electron capture as ρ_c increases.

The Effect of ρ_c on the Line Profile

The Evolution of the 1.644 μm Line Profile

Observable: Line Width of the 1.644 μm Emission Line

Our method gives a lower limit!

Mixing or continuum oversubtraction will mimic a narrower line and, therefore, lower ρ_c and $M_{\rm WD}$.

T.R. Diamond

Nebular Phase NIR Spectroscopy of SNe Ia

The $M_{ m WD}$ and ho_c Relationship for ${ m M}_{ m Ch}$ Models

The Effect of B Fields in the Expanding Ejecta

Most current SNe Ia models completely ignore magnetic fields during the explosion and for radiation transport.

- *B* fields might be the key to suppressing hydro-instabilities!
 - not important when γ -photons dominate (< 100 days)
 - become important when positrons dominate (200 + days)
- evolution of the line profile will be affected by:
 - B field strength
 - morphology
 - size scale
 - \longrightarrow shed light on origins

The Effect of a Turbulent B Field

Nebular Phase NIR Spectroscopy of SNe Ia

Observations

Late-Time SN 2014J Spectra

Look at that S/N!

Nebular Phase NIR Spectroscopy of SNe Ia

Questions?

16