

CSP Cosmology Or: How I Learned to Relax and Love Dust

Where We Are

- Icow-z CSPI photometry is nearly complete. Thanks to Carlos and the folks at A&M, we have the *best* low-z survey <u>product</u>:
 - Well-defined and publicly available filter functions.
 - Local sequence photometry, standards, etc.
 - Online quality control software.
 - Potential for a full covariance matrix.

CSPI High-z Project

Where We Are

- High-z photometry is complete.
 - ~70 "good" objects (at least in the NIR).
 - Auxiliary optical
 photometry is published
 (SNLS, SDSS, Essence).
 - So what's left to do?

$w\pm10\%$

High-z Cosmology

- What needs to be done:
 - Re-do photometry using Carlos' package. Better to be consistent between low- and high-z samples. Get it installed on eero.
 - Better SNIa SED template near maximum light.
 Capture the CaII triplet variation with stretch.

K-corrections

K-corrections

High-z Cosmology

- What needs to be done:
 - Re-do photometry using Carlos' package. Better to be consistent between low- and high-z samples. Get it installed on eero.
 - Better SNIa SED template near maximum light.
 Capture the CaII triplet variation with stretch.
 - Host galaxy photometry. Measure stellar masses.

Remember this guy?

Remember this guy?

Remember this guy?

Calibration!!!

 $\Delta z p_{\lambda}$

Calibration!!!

 $\Delta z p_{\lambda}$

Calibration!!!

High-z Cosmology

For discussion: what else can we do to make a NIR mark on cosmology?

Embrace the Dust

Tripp fits in B and H

Tripp color coefficients vs. wavelenth

Tripp Residuals vs. Tripp Residuals

 $\delta\mu_{\lambda}~({
m mag})$

Near-field Cosmology: The Hubble constant.

What CSP Brings

- Largest systematic for H_o: small number of SNIa hosts with independent distances. CSP adds 4 (07sr, 06X, 12fr, 06mr)
- Meigh quality set of distant SNeIa. Significantly lower disp.
- Improved treatment of reddening (allowing nearby objects like 06X to be used to calibrate Phillips relation).
- Synergy with CHP.
- TRGB calibration instead of/in addition to Cepheid calibration.

JOBS TO DO

- Finalize the CSPI photometry, optical and NIR. Do we want to create "pickled" photometry? Tie Landolt and Smith?
- Get host galaxy properties for CSPI. Is there a NIR stellar mass-Luminosity correlation?
- Re-do high-z photometry using Carlos' photometry package (it really needs a name).
- Work on SED templates and K-corrections. Another K-correction paper, but done the right way.

Intersection Sample?

- Combine (or not) the CfA3-4 and CSPI samples. Re-analyze the Union2 sample with added low-z objects.
- Impact of adding 30% more low-z objects. Need a fresh angle.
- Do proper reddening treatment instead of Tripp correction.
- Another idea: proper treatment of statistical and systematic errors in K-corrections. Do we have the data to do this? The stomach?

CSP: A River to Cosmology

